Abstract

Using a model for the equation of state and composition of dense matter and the magnitude of singlet proton superconductivity and triplet neutron superfluidity, we perform the first simultaneous fit of neutron star masses and radii determined from observations of quiescent low-mass x-ray binaries and luminosities and ages determined from observations of isolated neutron stars. We find that the Vela pulsar strongly determines the values inferred for the superfluid/superconducting gaps and the neutron star radius. We find, regardless of whether or not the Vela pulsar is included in the analysis, that the threshold density for the direct Urca process lies between the central density of 1.7 and 2 solar mass neutron stars. We also find that two solar mass stars are unlikely to cool principally by the direct Urca process because of the suppression by neutron triplet superfluidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.