Abstract

This paper proposes a simultaneous fault detection and isolation approach based on a novel transfer semi-nonnegative matrix factorization (TSNMF) algorithm. Different from the existing nonnegative matrix factorization (NMF) algorithm, TSNMF takes advantages of a few labeled samples and geometry structures of sample spaces to improve performance. Labeled samples refer to a type of sample whose memberships are already known. On the contrary, unlabeled samples are a type of samples whose memberships are unknown. Theoretically, we will demonstrate how labeled samples and geometry structures of sample spaces can improve fault detection and isolation performance. More importantly, the proposed simultaneous fault detection and isolation approach can achieve the fault detection and isolation purpose without use of monitoring statistics, which means it is easier to be implemented than the existing approaches. In comparison with the existing fault detection and isolation methods, the proposed detection and isolatio...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.