Abstract

This paper investigates the problem of the simultaneous fault detection and control (SFDC) for switched linear systems. To meet the control and detection objectives, the time-dependent detection filters and dynamic output feedback controllers are presented in SFDC under a mixed H∞/H− framework. A mode-dependent average dwell-time (MDADT) approach, which means that each subsystem has its own average dwell time, is adopted in this paper to reduce the conservativeness of the average dwell time method. And the discretized Lyapunov function (DLF) technique is first used to relax the MDADT constraints in SFDC. Some sufficient conditions for designing filters/controllers which satisfy the H∞/H− performance are given in terms of linear matrix inequalities (LMIs). What’s more, a two-step algorithm to solve the SFDC problem is proposed. The effectiveness of the proposed method is illustrated through two simulation examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.