Abstract

Reconstructing the dynamics and drivers of late Quaternary megafaunal extinctions requires direct radiometric date series that are assessed within probabilistic statistical frameworks. Extinction chronologies are poorly understood for many tropical regions, including Madagascar, which had a diverse, now-extinct Holocene large vertebrate fauna including a “megaherbivore” guild of endemic hippopotami and elephant birds. Madagascar's megaherbivores likely played vital roles in regulating ecosystem structure and nutrient cycling, but few direct dates are available for megaherbivore specimens identified to species level, with uncertainty over when and why different representatives of this guild disappeared. Here, we conduct a new investigation into Malagasy megaherbivore extinction dynamics, including 30 new AMS dates and 63 audited published dates. We use Gaussian-resampled inverse-weighted McInerny (GRIWM) analysis to estimate species-specific extinction dates for three elephant bird species (Aepyornis hildebrandti, Mullerornis modestus, Vorombe titan), eggshell representing Aepyornis or Vorombe, and two hippo species (Hippopotamus lemerlei, H. madagascariensis), and to estimate extinction dates for megaherbivore communities in different biomes. Megaherbivores persisted for millennia after first human arrival. Extinction date estimates vary significantly between biomes, with disappearance from dry deciduous forest over a millennium earlier than other biomes, possibly reflecting local variation in megaherbivore population densities or human pressures. However, megaherbivore communities including all elephant bird and hippo species persisted elsewhere across Madagascar until ∼1200-900 bp, when they collapsed suddenly. Extinctions are closely correlated in time with intensive conversion of forests to grassland at ∼1100-1000 bp, probably associated with a shift to agro-pastoralism and representing a radical change in sustainability of prehistoric human interactions with biodiversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call