Abstract

We present a unique pipe flow rig capable of simultaneous particle tracking and flow velocity measurements in a dilute, neutrally buoyant particulate pipe flow in regimes of transition to turbulence. The flow consists of solid glass spheres for the disperse phase and a density-matching fluid for the carrier phase. The measurements are conducted using a bespoke, combined two-dimensional particle image velocimetry and particle tracking velocimetry technique. The technique takes advantage of a phase discrimination approach that involves separating the disperse and carrier phases based on their respective image characteristics. Our results show that the rig and the technique it implements can effectively be employed to study transitional particulate pipe flows at dilute concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.