Abstract

The longitudinal motion control of automotive vehicles is heavily reliant on information about the time-varying tire road friction coefficient. In the presence of varying road roughness profiles, the effective vertical load on each wheel varies dynamically, influencing the tire friction. In this paper, we integrated the vertical and longitudinal dynamics of a quarter wheel to form an integrated nonlinear model. In the modeled dynamics, the time-varying random road profile and the tire friction are treated as unknown inputs. To estimate these unknown inputs and states simultaneously, a combination of nonlinear Lipschitz observer and modified super-twisting algorithm (STA) observer is developed. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is established. Simulation results performed with the high-fidelity vehicle simulation software CarSim demonstrate the effectiveness of the proposed scheme in the estimation of states and unknown inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.