Abstract

Magnetic nanoparticles (MNPs) exhibit unique physicochemical characteristics owing to their comparable dimensions with important biological substances, high surface-to-volume ratios, size-dependent magnetic properties, and temperature sensitivity. In this study, we present a novel method for simultaneously estimating the magnetic moment and Brownian relaxation time distribution of MNPs based on AC magnetization harmonics. We provide a detailed description of the theoretical framework and experimental procedures. The dynamics of MNP magnetization are described using the Fokker-Planck equation, and a matrix equation is established to connect the magnetic moment, Brownian relaxation time, and magnetization harmonics. By employing a non-negative linear least squares algorithm with constraints, the magnetic moment and Brownian relaxation time distributions are inversed, which are then converted into the distributions of core sizes and hydrodynamic sizes. Finally, the estimated core size distribution reconstructed from M-H curves is consistent with the hydrodynamic size distribution measured by dynamic light scattering. This method is particularly useful for facilitating quantitative magnetic immunoassays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.