Abstract
κ-Carrageenase provides an attractive enzymatic approach to preparation of κ-carrageenan oligosaccharides. Pseudoalteromonas tetraodonis κ-carrageenase is active at the alkaline conditions but displays low thermostability. To further improve its enzymatic performance, two mutants of Q42V and I51H exhibiting both improved thermostability and enzyme activity were screened by the PoPMuSiC algorithm. Compared with the wild-type κ-carrageenase (WT), Q42V and I51H increased the enzyme activity by 20.9% and 25.4%, respectively. After treatment at 50 ℃ for 40 min, Q42V and I51H enhanced the residual activity by 31.1% and 25.9%, respectively. The Tm values of Q42V, I51H, and WT determined by differential scanning calorimetry were 58.2 ℃, 54.8 ℃, and 51.2 ℃, respectively. Compared with untreated and HCl-treated κ-carrageenans, Q42V-treated κ-carrageenan exhibited higher pancreatic lipase inhibitory activity. Molecular docking analysis indicated that the additional pi-sigma force and hydrophobic interaction in the enzyme-substrate complex could account for the increased catalytic activity of Q42V and I51H, respectively. Molecular dynamics analysis indicated that the improved thermostability of mutants Q42V and I51H could be attributed to the less structural deviation and the flexible changes of enzyme conformation at high temperature. This study provides new insight into κ-carrageenase performance improvement and identifies good candidates for their industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.