Abstract

This study examines the deformation behaviour of Ni-Co microwires exhibiting high strengths and ductility, where the addition of Co is intended to decrease the stacking fault energy. A reduction in stacking fault energy is likely to retard the recovery processes, refine grain size and enhance strain hardening by dislocation interactions at twin boundaries. Microwires were drawn to a strain of 5.88, from annealed Ni-Co alloys with Co content varying from 30 to 60 wt%. Subsequent tensile testing revealed a simultaneous increase in strength and ductility with an increase in Co content. The enhanced strength is a consequence of the finer grain size with an increase in Co, and the larger ductility is related to a combination of greater strain hardening and a higher strain rate sensitivity with an increase in Co. The textured drawn Ni-Co wires exhibited higher strengths than those obtained by severe plastic deformation with comparable grain sizes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.