Abstract

In this article, fluorine (F)-doped SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> (FTO) thin-film transistors (TFTs) are fabricated by the solution process with a low process temperature (300 °C). The FTO film characteristic, TFT electrical performance, and stability under the negative bias illumination stress (NBIS) are improved by F doping. The enhancement in electrical performance and stability is because F can substitute oxygen atom in the lattice and oxygen vacancies in FTO system. The FTO TFT with 3 mol.% F doping ratio shows superior electrical performance with saturation mobility (μ) of 14.48 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /V·s, a threshold voltage (V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">TH</sub> ) of 1.01 V, a subthreshold swing (SS) of 0.19 V/decade, and an ON/OFF current ratio (I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">on</sub> /I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">off</sub> ) of 9.32 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">7</sup> . Furthermore, the 3 mol.% FTO TFT shows only -0.8 V V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">TH</sub> shift under NBIS. The total density of states (DOSs) for the FTO TFT is extracted in order to further verify the stability improvement based on the temperature-dependence field-effect measurement. The results indicate that the simple solution-processed FTO-TFT is promising for application in electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.