Abstract

A simple and sensitive enantiomeric analytical method was established for the determination of two new isopropanol-triazole fungicides mefentrifluconazole and ipfentrifluconazole in plant-origin foods using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The best enantioseparation of the four target stereoisomers was achieved on a Chiral MX(2)-RH column within 7 min by reversed-phase liquid chromatography, which is a significant improvement in the resolution of different chiral compounds under one set of conditions. A simple and effective pretreatment procedure was developed for the extraction and purification of the two target chiral fungicides using reversed-dispersive solid-phase extraction (r-DSPE) with multiwalled carbon nanotubes (MWCNTs). The influence of the type and amount of MWCNTs on the purification efficiencies and recoveries was evaluated. The mean recoveries for all four stereoisomers were in the range of 76.9-91.2%, with relative standard deviation (RSD) values below 7.2%. The limit of quantification (LOQ) of all stereoisomers of mefentrifluconazole and ipfentrifluconazole was 5 μg/kg for all tested matrixes. The results of the method validation and real samples analysis confirm that the established method is efficient and reliable for the enantiomeric determination of mefentrifluconazole and ipfentrifluconazole in plant-origin food samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call