Abstract
In this work, a novel ZnFe2O4/SWCNTs nanohybrid was successfully synthesized as electrode material and applied to the simultaneous quantitative determination of carbendazim (CBZ) and thiabendazole (TBZ). The electrochemical behaviors of CBZ and TBZ on the ZnFe2O4/SWCNTs/GCE were investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The electrochemical active area of modified electrode was calculated, which is nearly 5.5 times that of the bare electrode. The influence of various factors such as accumulation time, pH and scan rates, type of surfactant, and the electrochemical reaction mechanism was studied. The results showed that the reaction of CBZ/TBZ was controlled by adsorption/diffusion and was a quasi-reversible/an irreversible process at the ZnFe2O4/SWCNTs/GCE. In the pH 7.0 phosphate-buffered saline (PBS) containing 10.0 μg/mL CTAB, the electrochemical responses of CBZ and TBZ were separately investigated and were linearly dependent on their concentrations ranging from 0.5 to 100.0 μM, with relatively low detection limits of 0.09 and 0.05 μM, respectively. The concentration range for the simultaneous determination of CBZ and TBZ was 1.0-100.0 μM. Furthermore, with satisfactory results, the proposed electrochemical sensor was successfully applied to the determination of CBZ and TBZ in the real samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.