Abstract

The application of proton exchange membrane water electrolyzer (PEMWE) technology has long been limited by the excessive energy consumption and poor catalyst durability because of the harsh corrosive and oxidative conditions that are related to the anodic oxygen evolution reaction (OER) in acidic electrolytes. Herein, we circumvent this challenge by adopting alternative hydrazine oxidation reaction (HzOR) as the anodic half-reaction, integrated with the cathodic hydrogen evolution reaction (HER) for sustainable hydrogen production. To this end, we further developed a PtCo alloy nanosheets electrocatalyst that can efficiently catalyze both the HzOR and HER with ultralow potentials. Specifically, the overall hydrazine splitting driven by the PtCo alloy requires only 0.28 V at 10 mA cm−2 along with outstanding stability of more than 3000 h. We further proposed a PEM hydrazine electrolyzer (PEMHE) design to promote the practical application. The device can not only produce hydrogen with a high yield rate of 1.87 mmol h−1 cm−2 at a practical current density of 100 mA cm−2 with a long durability of 60 h, but also effectively decontaminate hydrazine sewage with the hydrazine removal efficiency up to 100%. Our work provides a new solution to simultaneous mass hydrogen fuel production and hydrazine hazard removal from acidic waste water at minimized energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call