Abstract

The ground state and a few excited state energies of a hydrogenic donor in a quantum well are computed in the presence of pressure and temperature. The binding energies are worked out for GaAs/ Ga1−xAlxAs structures as a function of well size when the pressure and temperature are applied simultaneously. A variational approach within the effective mass approximation is considered. The results show that for a constant applied pressure, an increase in temperature results in a decrease in donor impurity binding energy while an increase in the pressure for the same temperature enhances the binding energy. When the pressure and temperature are applied simultaneously the binding energy decreases as the well width increases. In all the cases, it is observed that there is an increase in the binding energy due to the decrease in the quantum well size and in the dielectric constant whereas the effects of temperature on the effective mass are minimal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call