Abstract

Based on the effective-mass approximation, the effects of external electric field and laser radiation on the binding energy and Stark shifts of electronic energy levels of a system consist of an on-center hydrogenic donor impurity in a spherical quantum dot which is located at the center of a cylindrical nano-wire have been studied. The energy eigenvalues and corresponding wave functions are calculated using the finite difference approximation. The binding energy and Stark shifts dependencies are reported upon the electric field strength, aluminum concentration and laser radiation. The results reveal that Stark shifts of ground and first excited states are strongly affected by presence of impurity, laser radiation and Al concentration. Additionally, the binding energies decreases as the electric field increases and become negligible for large values of electric field; decreases as the laser radiation increases and increases as the Al concentration increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.