Abstract

Arrhythmia detection by classifying ECG heartbeats is an important research topic for healthcare. Recently, deep learning models have been increasingly applied to ECG classification. Among them, most methods work in three steps: preprocessing, heartbeat segmentation and beat-wise classification. However, this methodology has two drawbacks. First, explicit heartbeat segmentation can undermine model simplicity and compactness. Second, beat-wise classification risks losing inter-heartbeat context information that can be useful to achieving high classification performance. Addressing these drawbacks, we propose a novel deep learning model that can simultaneously conduct heartbeat segmentation and classification. Compared to existing methods, our model is more compact as it does not require explicit heartbeat segmentation. Moreover, our model is more context-aware, for it takes into account the relationship between heartbeats. To achieve simultaneous segmentation and classification, we present a Faster R-CNN based model that has been customized to handle ECG data. To characterize inter-heartbeat context information, we exploit inverted residual blocks and a novel feature fusion subroutine that combines average pooling with max-pooling. Extensive experiments on the well-known MIT-BIH database indicate that our method can achieve competitive results for ECG segmentation and classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.