Abstract

Simultaneous observations of a microwave burst at 2 and 6 cm wavelengths were carried out with the Very Large Array (VLA). The 6 cm burst source is located close to a magnetic neutral line, presumably near the top of a flaring loop, while the 2 cm emission originates from the footpoints of the loop. It is concluded that the 6 cm emission is dominated by gyrosynchrotron radiation of the thermal electrons in the bulk heated plasma at a temperature of ∼ 4 × 10 7 K, while the 2 cm emission is due to nonthermal particles released and accelerated during the flare process. From the observed low degree of polarization and the lack of the 2 cm source cospatiality with the 6 cm source a magnetic field of 200–350 G and δ ≳ 4 are estimated in the flare energy release site. A DC electric field flare model is invoked to explain the long delay between the peaks at the two wavelengths. From the delay, the strength of the electric field is estimated to be 0.2–4 μ statvolt cm −1 in the flaring region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call