Abstract

This paper presents a Dual Directional Sheared Spatial Phase-Shift Digital Shearography (DDS-SPS-DS) system for simultaneous measurement of strains/displacement derivative in two directions. Two Michelson Interferometers are used as the shearing device to create two shearograms, one in the x-shearing direction and one in the y-shearing direction, which are recorded by a single CCD camera. Two lasers with different wavelengths are used for illumination, and corresponding band pass filters are applied in front of each Michelson Interferometer to avoid cross-interference between the two shearing direction channels. Two perpendicular shearing directions in the two measurement channels introduce two different spatial frequency carriers whose spectrums are orientated in different directions after Fourier Transform. Phase maps of the recorded two shearograms can be obtained by applying a windowed inverse Fourier transform, which enables simultaneous measurement of dual directional strains/displacement derivatives. The new system is well suited for nondestructive testing and strain measurement with a continuous or dynamic load. The capability of the dual directional spatial phase-shift digital shearography system is described by theoretical discussions as well as experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.