Abstract

The rate of Riboflavin (RF) consumption in cancerous cells is interestingly high and this might imply the use of RF ligand in nanocarriers in order to target anticancer drugs into cancer cells. This study aimed to develop a hybrid drug carrier of Doxorubicin (DOX) loaded on RF targeted micelles composed of hydrophobic polylactic-glycolic acid (PLGA) and hydrophilic polyethylene glycol (PEG). In this regard, a simultaneous encapsulation of DOX and in-situ micellization as well as the self-assembly of PLGA-PEG-RF molecules were investigated. Moreover, the effects of microfluidic environment and transition metal dichalcogenide (TMD) nanolayers on the micellization properties (e.g., stability, size, and self-assembly interaction energies) of nanocarriers were simulated for the first time. To this purpose, the simulations were performed using two non-microfluidic methods as well as a novel microfluidic one. The molecular simulations revealed that all of the selected TMDs, especially MoSe2, had a great impact on the stability and size of nanocarriers. MoSe2 significantly enhanced the loading capacity as well as the stability of RF-targeted micelles and reduced the size of nanocarriers. Likewise, the results of various analyses demonstrated that the microfluidic method is the most effective way to synthesize nanocarriers with higher stability and smaller particle size. Hence, the use of MoSe2 monolayer, micelle containing RF, and microfluidic method were believed to be the best approach in order to improve the quality of micelles. The present work sheds new light on the use of TMDs in the synthesis of smart carriers for cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.