Abstract

We introduce a novel multiplexing technique applied to optical fiber distributed sensors, based on optical backscatter reflectometry (OBR) and high-scattering MgO-doped fibers. In this paper, we demonstrate the possibility of simultaneously detecting multiple fiber with a single scan using an OBR distributed sensor, and successfully discriminating each sensing region (with ~1 mm spatial resolution). The sensing element is a high-scattering fiber with MgO-based nanoparticles doping in the core, that emits a scattering signal more than 40 dB larger than a standard fiber, while having similar temperature and strain sensitivity. Multiplexing occurs as the scattered light from a sensing fiber overshadows the amount of scattering occurring in all the other channels. The setup has been validated for temperature sensing and implemented in an epidural catheter with multiple fibers fixed to the outer walls for strain sensing. The proposed solution goes beyond the multiplexing methods which exploit 1 × N switches, as the multiplexing is simultaneous and not rearranged in different time slots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.