Abstract
The simultaneous determination of strain and temperature distributions from the measurement of noise-initiated Brillouin scattering (NIBS) power and frequency shift in optical fibers is discussed. Equations governing the growth of the NIBS signal are derived and from these, we calculate the dependence of the Brillouin power on temperature and strain. We study the potential problem given by the need to normalize the nonlinear Brillouin signal and present a new technique that solves this problem by mathematically combining the values of the Stokes and anti-Stokes powers to produce a linear effective power. Experimental results are presented that support this theory and allow the verification of the coefficients governing the dependence of the Brillouin power and frequency shift on temperature and strain. The signal-to-noise ratio of the sensor is discussed, and it is found that the noise associated with the field statistics plays a limiting role in the sensor performance and that an optimum value for the Brillouin gain factor can be determined. A simultaneous distributed temperature and strain sensor is demonstrated; preliminary results show a strain resolution of 100-/spl mu/m strain, a temperature resolution of 4/spl deg/C, and a spatial resolution of 40 m, over a sensing length of 1200 m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.