Abstract

The effect of different times of Fe:Ethylenediamine-N, N′-disuccinic acid (EDDS) dosing and H2O2 as well as different Fe:EDDS concentrations in the sequential treatment sunlight/H2O2 followed by sunlight/H2O2/Fe:EDDS at circumneutral pH was investigated for the first time focusing both in contaminants of emerging concern (CECs) and bacteria removal in urban wastewater treatment plant effluents. Process efficiency was evaluated in terms of (i) degradation of five CECs (namely caffeine, carbamazepine, diclofenac, sulfamethoxazole and trimethoprim) at the initial concentration of 100 μgL−1 each and (ii) bacteria inactivation (Escherichia coli (E. coli) and Salmonella spp). The effect of H2O2, Fe and EDDS concentration and Fe:EDDS dosing time was evaluated. 60% removal of the sum of total CECs and pathogens inactivation below the detection limit (DL) were observed by the sequential treatment with Fe:EDDS additions at 60 min and 45 min in simulated urban wastewater effluent. Sequential treatment was validated in actual urban wastewater effluent, being able to remove 60% of the target CECs and inactivate bacteria below the DL. Increasing EDDS concentration negatively affected Salmonella spp inactivation. Sequential treatment based on 120 min of sunlight/H2O2 (50 mg L−1) and subsequent SPF with Fe:EDDS (0.1:0.1 mM) was chosen as best operation conditions for full scale treatment in urban wastewater treatment plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call