Abstract

Precisely measuring the magnetic-field gradient within a vacuum chamber is important for many precision experiments and can be realized by atom interferometry using magnetically sensitive sublevels at different times to make a differential measurement, which had been demonstrated in our previous work. In this paper, we demonstrate a differential method to measure the magnetic-field gradient by means of two simultaneously operated atom interferometers using double atomic fountains. By virtue of this simultaneous differential measurement to reject common-mode noise, the resolution can be improved by one order of magnitude for about a 1000-s integration time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call