Abstract

Nowadays, contamination of various mycotoxins in crops and their products exposes increasing risks to human health. Efficient determination methods are urgently needed. Herein, a bifunctional aptamer and a simple aptasensor based on microscale thermophoresis assay (MST) were constructed for the first time for simultaneous determination of two mycotoxins, i.e. zearalenone (ZEN) and ochratoxin A (OTA). The bifunctional aptamer was engineered by splicing a ZEN aptamer and an OTA aptamer with a linker according to the structure analysis of aptamers. The binding mechanism of the bifunctional aptamer to ZEN and OTA were revealed basing on the molecular docking studies. The MST assay proved that the bifunctional aptamer showed high affinity and specificity towards ZEN and OTA. Furthermore, a bifunctional aptamer-based MST-aptasensor was developed for simultaneous detection of ZEN and OTA in corn oil sample. The MST-aptasensor provided a limit of detection (LOD) of 0.12 nM, with satisfactory recoveries of 93.31–104.19% and excellent selectivity, indicating that the bifunctional aptamer and MST-aptasensor had great potential in practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call