Abstract

A modified principle component artificial neural network (PC-ANN) model is developed for simultaneous determination of thiocyanate and salycilate concentration after passing through the bulk of a liquid membrane by tri-phenyl benzyl phosphonium chloride. All calibration, and test samples data were obtained using UV-Vis spectrophotometer. In this way, a modified PC-ANN consisting of three layers of nodes was trained by combination of Bayesian-Levenberg-Marquardt as training rule. Sigmoid and liner transfer functions were used in the hidden and output layers respectively to facilitate nonlinear calibration. The model could accurately estimate the concentration of components with acceptable precision and accuracy, for mixtures. The PC-ANN model exhibits a good ability for the simultaneous determination of the thiocyanate and salycilate in concentration range 0.5 x 10(-4) mol.l(-1) up to 5.0 x 10(-4) mol.l(-1) with Root Mean square error (2.22% and 2.20%, for thiocyanate and salycilate, respectively) and high correlation coefficients (R2= 0.998 or greater). Results obtained with modified trained PC-ANN were compared with stepwise linear regression (SMLR) model. Validation of the two models shows a better ability in estimation of the modified PC-ANN as compared with the SMLR model (MSRE given are 3.12%, 6.31%.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.