Abstract

We propose the use of thickness-twist (TT) and face-shear (FS) vibration modes of an AT-cut quartz crystal plate resonator for simultaneous determination of the inertia and stiffness of a thin film deposited on a crystal surface. A theoretical analysis using Mindlin's first-order theory for crystal plates is performed to demonstrate the idea. Expressions for the stiffness ratio and mass ratio between the thin film and the resonator are presented in terms of frequency shifts of FS and TT modes, which are experimentally measurable. A numerical example is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call