Abstract

We propose the use of thickness-twist (TT) and face-shear (FS) vibration modes of an AT-cut quartz crystal plate resonator for simultaneous determination of the inertia and stiffness of a thin film deposited on a crystal surface. A theoretical analysis using Mindlin's first-order theory for crystal plates is performed to demonstrate the idea. Expressions for the stiffness ratio and mass ratio between the thin film and the resonator are presented in terms of frequency shifts of FS and TT modes, which are experimentally measurable. A numerical example is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.