Abstract

The fourteen Lanthanides are determined by tungsten coil atomic emission spectrometry. Twenty-five microlitre sample aliquots are placed directly on the coil. A simple constant current power source carefully dries the sample prior to analysis. During this dry step, the voltage is monitored to prevent over heating. This allows for shorter atomization programs, while improving sensitivity and coil lifetime. During the 5 s high temperature atomization step, the emission signals for as many as seven Lanthanides are determined simultaneously in the same 55 nm spectral window. The analytical figures of merit for all 14 natural Lanthanides are reported and compared with nitrous oxide flame atomic emission spectrometry. Tungsten coil atomic emission concentration detection limits are in the range 0.8 (Yb) to 600 (Pr) µg l−1, and are lower than those for the flame in most cases. The absolute detection limits are near or below the ng level: significantly lower than the flame detection limits due to the smaller sample volume required. A three-fold improvement in detection limit may be realized by combining the signals for multiple emission lines for a single element. The method is applied to the determination of seven Lanthanides in a soil sample acquired from the National Institute of Standards and Technology. After a simple acid extraction, the measured values agree with the reported values with 95% confidence in all cases but one, Yb. Finally, a conditioning program for new tungsten coils enhances reproducibility and maximizes the emission signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call