Abstract

A sensitive, accurate, and time-saving approach was developed for the simultaneous quantification of eight sulfur compounds in the sulfur pathway, which could reflect the status of an organism, including oxidative stress, signal transduction, enzyme reaction, and so on. In order to overcome the instability of highly reactive sulfhydryl compounds, N-ethylmaleimide derivatization was adopted to effectively protect sulfhydryl-containing samples. Using isotope-labeled glutathione (GSH-13C2, 15N), the validated method was demonstrated to offer satisfactory linearity, accuracy, and precision. Separation was done by UHPLC, using a BEH amide column. Accordingly, 0.1% formic acid acetonitrile was selected as the precipitant. A tandem mass spectrometer was coupled to the chromatographic system and afforded a detection limit of 0.2 ng/mL. Good linearity was maintained over a wide concentration range (r2 > 0.994), and the accuracy was in the range of 86.6-114% for all the studied compounds. The precision, expressed in RSD%, ranged from 1.1% to 9.4% as intraday variability and less than 13% as interday precision for all of the analytes. The approach was applied to study the potential therapeutic mechanism ofa well-known traditional Chinese medicine, Shao Fu Zhu Yu decoction. The results suggested that Shao Fu Zhu Yu decoction might protect against oxidative damage by increasing the concentrations of sulfhydryl compounds. Graphical abstract An approach to quantitatively determining sulfur compounds in the sulfur pathway simultaneously wasestablished and applied to the study of the effect of Shao Fu Zhu Yu decoction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.