Abstract
A specific, sensitive and rapid ultra high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) method was developed and validated for simultaneous determination of six major bioactive constituents in Rhizoma Panacis Japonici (RPJ), including oleanolic acid-type chikusetsusaponin V, IV, hemsgiganoside B, damarane-type ginsenoside Rb1, Rg1 and Re in rat plasma, using estazolam as the internal standard (IS). Plasma samples were pretreated with methanol/acetonitrile (1:1, V/V) for protein precipitation. Chromatographic separation was performed on an Agilent Eclipse Plus C18 column, using a gradient mobile phase consisting of methanol and 0.1% formic acid aqueous solution. A tandem mass spectrometric detection with an electrospray ionization (ESI) interface was conducted via multiple reaction monitoring (MRM) under positive ionization mode. For all the six analytes of interest, the calibration curves were linear in the concentration range of 2.00–500 ng/mL with r ≥ 0.9956. The intra- and inter-day precisions (in terms of relative standard deviation, RSD) were all below 10.2% and the accuracies (in terms of relative error, RE) were within −5.0% to 6.3% for all six analytes. Extraction recovery, matrix effect and stability data all met the acceptance criteria of FDA guideline for bioanalytical method validation. The developed method was applied to the pharmacokinetic study in rat. After oral administration of the total saponins from RPJ, six analytes were quickly absorbed into the blood and presented the phenomenon of double peaks. Among the six analytes, ginsenoside Rb1 showed slowest elimination from plasma with a t1/2z of 16.00 h, while that of the others were between 1.72 and 5.62 h. In conclusion, the developed method was successfully used to simultaneously analyze major oleanolic acid-type and damarane-type saponins of RPJ in rat plasma after oral administration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.