Abstract

Danmu injection and Danmu tablet are two widely used traditional Chinese medicine made of Nauclea officinalis (commonly known as Danmu), in which the alkaloids are the major active substances. In this paper, an ultra fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method was developed for simultaneous determination and the pharmacokinetic characteristics study of six main active alkaloids (naucleamide A-10-O-β-d-glucopyranosid, naucleamide G, pumiloside, 3-epi-pumiloside, strictosamide and vincosamide) of the two above-mentioned Danmu preparations in rat plasma. In the course of the experiment, following sample preparation by protein precipitation with methanol-ethyl acetate (2:1, v/v), the nitrogen-dried extraction was reconstituted in methanol and assayed on a C18 column using a gradient elution program with mobile phase consisting of acetonitrile and water containing 0.1% formic acid. The MS detection was performed in positive ionization mode with selected ion transitions. The established method was fully validated and proved to be sensitive and specific with lower limits of quantification (LLOQs) all less than 0.32ng/mL in rat plasma and matrix effects ranged from 88.87 to 108.27%. Good linearities of six alkaloids were obtained in respective concentration ranges (r(2)>0.995). The average extract recoveries for each compound at three quality control concentration levels were no less than 79.70%, and the precision and accuracy were within the acceptable limits. The validated method was successfully applied to the pharmacokinetic study of six alkaloid components of Danmu injection and tablet in rat plasma. The obtained results may be helpful to reveal the action mechanism and guide the clinical application of Danmu preparations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.