Abstract
This paper developed a novel, sensitive, and selective ultra-performance liquid chromatography–triple quad mass spectrometry method to simultaneously determine seven effective constituents (triptolide, triptophenolide, celastrol, wilforgine, wilforine, wilfordine and wilfortrine) of Tripterygium glycosides (GTW) in human serum and urine. The chromatographic separation was performed on the C18 column using an ammonium acetate buffer solution–acetonitrile (both containing 0.1% formic acid) in a gradient program with a flow rate of 0.3 mL/min. Monitoring reaction mode was applied to target compounds quantitative analysis in the positive electrospray ionization (ESI) mode. The analysis process took 11 min in total. This method was fully validated with a linear range of 1–200 ng/mL for triptolide, 0.4–80 ng/mL for celastrol, 0.1–20 ng/mL for triptophenolide, wilforgine, wilforine, wilfordine, and wilfortrine. The intra-day and inter-day accuracy and precision of the target compounds all met the 15% criterion in both serum and urine. Extraction recovery, matrix effect, and dilution integrity were also validated. The short-term and long-term stability results indicated that all the constituents were stable in human serum and urine under the investigated storage conditions. 10 patients' specimens were collected and analyzed. Most of the compounds exhibited the tendency of higher concentration in urine than that in serum. The concentration that was detected in the serum and in the urine of alkaloids showed a positive-correlation property. This is the first time that triptophenolide was quantified in human bio-matrices. The method is feasible for multi-components therapeutic monitoring or pharmacokinetics study in clinical pharmaceutical research of Tripterygium glycosides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.