Abstract

Characteristics of the adsorption/electro-reduction of Pt/Rh hexamethylene tetramine (HMTA) complex on static mercury drop electrode surface were studied. Cyclic voltammetry was carried out to get the insight about the mechanistic behaviour of the catalytic current obtained in the voltammetric scan of Pt/Rh HMTA complex in acidic solution. Adsorptive stripping voltammetry using HMTA as the complexing agent was found to be highly sensitive method for the determination of Pt/Rh. Voltammetric measurements were carried out using hanging mercury drop electrode (HMDE) as the working electrode, a glassy carbon rod as the counter and an Ag/AgCl/KCl saturated as the reference electrode. Various electrochemical parameters like deposition potential, deposition time, concentration of the ligand, supporting electrolyte etc. were optimized. The detection limit of Pt and Rh was found to be 4.38 pML −1 and 2.80 pML −1, respectively for the deposition time of 30 s. Simultaneous determination of Pt(II) and Rh(III) in water samples was possible. The method was found to be free from the commonly occurring interfering ions such as Cu(II), Cd(II), Zn(II), Pb(II), Cr(III), Cr(VI), Fe(III), Fe(II), Ni(II) and Co(II). Spike recovery tests for both Pt and Rh in tap water and sea water samples were also carried out. The method has been verified by analyzing certified reference material (WMG-1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.