Abstract
Di(2-ethylhexyl) phthalate (DEHP) and tri(2-ethylhexyl) trimellitate (TEHTM or TOTM) are common plasticizers that are also largely used for PVC medical devices, e.g. bags and tubing for blood transfusions and infusions. The leachability of medical devices is a well-known situation of increasing toxicological concern. To assess the migration of plasticizers from PVC medical devices into human blood we developed and validated an analytical method for the determination of DEHP and TOTM in combination with the determination of their primary degradation products mono(2-ethylhexyl) phthalate (MEHP), 1,2-di(2-ethylhexyl) trimellitate (1,2-DEHTM) and 2-mono(2-ethylhexyl) trimellitate (2-MEHTM). The presented method involves liquid–liquid extraction of the analytes from the blood followed by the subsequent analytical separation and detection using LC–MS/MS analysis. The validation of the procedure showed a good precision in the range of 1.8 to 5.3%. Mean accuracy ranged from 86% for 1,2-DEHTM to 109% for MEHP. LOQ was found to be 2 to 5μg/L for each of the analytes. Additionally, the method is characterised by its wide linear range up to 2mg/L each for the degradation products of TOTM to 100mg/L for the parent plasticizer DEHP. The presented method promises to be of major advantage for further studies as it allows for the first time the simultaneous determination of DEHP and TOTM in human blood in combination with the analysis of their degradation products that render possible to investigate the leachability of a broad range of PVC medical devices in human blood using only one analytical method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.