Abstract

A simple, sensitive and selective square-wave voltammetry method for simultaneous determination of paracetamol and penicillin V on a bare (unmodified) boron-doped diamond electrode has been developed. The good potential separation of about 0.35V between the oxidation peak potentials of both drugs present in mixture was found. It was found by cyclic voltammetry that paracetamol gave quasireversible wave and penicillin V provided irreversible oxidation peak. The effect of supporting electrolyte, pH and scan rate on voltammetric response of both drugs was studied to select the optimum experimental conditions. The optimal conditions for quantitative simultaneous determination were obtained in acetate buffer solution at pH 5.0. The oxidation peak of paracetamol and penicillin V showed a systematic increase in peak currents with increase of their concentration. The calibration curves for the simultaneous determination of paracetamol and penicillin V exhibited the good linear responses within the concentration range from 0.4 to 100μM for both drugs. The detection limit was established to 0.21 and 0.32μM for paracetamol and penicillin V, respectively. The method proved the good sensitivity, repeatability (RSD of 1.5 and 2.1% for mixture solution of 10μM PCM and PEN) and selectivity when influence of interferents commonly existing in human urine was negligible. The practical analytical utility of proposed method was demonstrated by simultaneous determination of paracetamol and penicillin V in human urine samples, with results similar to those obtained using a high-performance liquid chromatography method as an independent method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.