Abstract

A novel cysteic acid modified carbon paste electrode (cysteic acid/CPE) based on electrochemical oxidation of l-cysteine was developed to simultaneously determine ofloxacin and gatifloxacin in the presence of sodium dodecyl benzene sulfonate (SDBS). Fourier transform infrared spectra (FTIR) indicated that l-cysteine was oxidated to cysteic acid. Electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) indicated that cysteic acid was successfully modified on electrode. The large peak separation (116mV) between ofloxacin and gatifloxacin was obtained on cysteic acid/CPE while only one oxidation peak was found on bare electrode. And the peak currents increased 5 times compared to bare electrode. Moreover, the current could be further enhanced in the presence of an anionic surfactant, sodium dodecyl benzene sulfonate. The differential pulse voltammograms (DPV) exhibited that the oxidation peak currents were linearly proportional to their concentrations in the range of 0.06–10μM for ofloxacin and 0.02–200μM for gatifloxacin, and the detection limits of ofloxacin and gatifloxacin were 0.02μM and 0.01μM (S/N=3), respectively. This proposed method was successfully applied to determine ofloxacin and gatifloxacin in pharmaceutical formulations and human serum samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.