Abstract

A simple, rapid and high throughput analytical approach with combination of mechanochemical extraction (MCE) and direct analysis in real time mass spectrometry (DART-MS) analysis was developed for the simultaneous determination of multiple chemical components in cigarette fillers. Different kinds of substances including nicotine, cigarette alkaloids, carbohydrates, organic acids, humectants and other additives were successfully extracted using MCE and detected by high resolution DART-MS. Six solvents of various polarities were compared during MCE process and significant differences were observed. Different brands of cigarettes as well as standard research cigarette exhibited distinctive chemical features and DART-MS fingerprints. Principle component analysis showed clear differentiation among different cigarettes extracted with the same solvent and different solvent extracts of the same type of cigarette. The putative chemical formulas were proposed based on accurate m/z values with <10 ppm mass errors. The relative contents of nicotine and other identified substances were compared and significant differences were observed among cigarettes of different locations. The whole procedure of MCE combined with DART-MS only takes minutes from raw cigarette fillers to obtaining the semi-quantitative results. The operation is simple and high throughput, providing an efficient method to analyze cigarette composition, and to establish a methodology to acquire the rapid cigarette fingerprints for quality control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.