Abstract

Scanning transmission electron microscopy (STEM) is a suitable method for the quantitative characterization of nanomaterials. For an absolute composition determination on an atomic scale, the thickness of the specimen has to be known locally with high accuracy. Here, we propose a method to determine both thickness and composition of ternary III-V semiconductors locally from one STEM image as shown for the example material systems Ga(AsBi) and (GaIn)As. In a simulation study, the feasibility of the method is proven and the influence of specimen thickness and detector angles used is investigated. An application to an experimental STEM image of a Ga(AsBi) quantum well grown by metal organic vapour phase epitaxy yields an excellent agreement with composition results from high resolution X-ray diffraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.