Abstract

This aim of the work was to establish an acceptable sensitive assay based on ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for quantitatively analyzing the plasma concentrations of iguratimod (IGR) and its metabolite M2 in rats, and to further investigate the effect of fluconazole on the pharmacokinetics of IGR and M2. The mobile phase consisted of acetonitrile and water with 0.1% formic acid, was used to separate IGR, M2 and internal standard (IS) fedratinib on a UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm) with the flow rate of 0.4 mL/min. Positive ion mode and multiple reaction monitoring (MRM) were used to construct the quantitative analysis. The calibration standard of IGR and M2 covered 2–10000 and 1–1000 ng/mL respectively, with the lower limit of quantification (LLOQ) as 2 ng/mL and 1 ng/mL respectively. In addition, selectivity, recovery, accuracy, precision, matrix effect and stability of the method validation program were well accepted in this work. Subsequently, this approach was used to assess the effect of fluconazole on the pharmacokinetics of IGR and M2 in rats. In the presence of 20 mg/kg fluconazole (experimental group), we found the main pharmacokinetic parameters were significantly altered when compared with 2.5 mg/kg IGR alone (control group). Among them, AUC(0-∞) and Cmax of IGR in the experimental group was 1.43 and 1.08 times higher than that of the control group, respectively. Moreover, we also found that the other main pharmacokinetic parameters of M2 had no significant changes, except t1/2z and Tmax. In conclusion, fluconazole significantly altered the main pharmacokinetics of IGR and M2 in rats. It implys that we should pay more attention to the adverse reaction of IGR when the concomitant use of fluconazole and IGR occur in the future clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call