Abstract

Fluorinated graphene/gold nanocage (FGP/AuNC) nanocomposite was developed for simultaneous determination of heavy metals using square wave anodic stripping voltammetry. Under optimized conditions, with a buffer pH of 5.0, a deposition potential of - 1.25V, and a deposition time of 140s, the method can obtain the best results. The FGP/AuNC electrode exhibits low limits of detection (0.08, 0.09, 0.05, 0.19, 0.01μgL-1), wide linear ranges (6-7000, 4-6000, 6-5000, 4-4000, 6-5000μgL-1), and well-separated stripping peaks (at - 1.10, - 0.77, - 0.50, - 0.01, 0.31V vs Ag/AgCl) towards Zn2+, Cd2+, Pb2+, Cu2+, and Hg2+, respectively. Furthermore, the FGP/AuNC electrode is also used forsimultaneous determination of Zn2+, Cd2+, Pb2+, Cu2+, and Hg2+ in real samples (peanut, rape bolt, and tea). Highly consistent results are found between the electrochemical method and atomic fluorescence spectrometry/inductively coupled plasma-mass spectrometry. The method has been successfully applied to the determination of heavy metal ions in agricultural food. Graphical abstract Schematic representation of simultaneous determination of heavy metal ions by electrochemical method. The FGP/AuNC (fluorinated graphene/gold nanocage) electrode is used to simultaneous determination of Zn2+, Cd2+, Pb2+, Cu2+, and Hg2+ by square wave anode stripping voltammetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.