Abstract

Production and fate of taste and odor (T&O) compounds in natural waters are a pressing environmental issue. Simultaneous determination of these complex compounds (covering a wide range of boiling points) has been difficult. A simple and sensitive method for the determination of eight malodors products of cyanobacterial blooms was developed using automatic purge and trap (P&T) coupled with gas chromatography–mass spectrometry (GC–MS). This extraction and concentration technique is solvent-free. Dimethylsulfide (DMS), dimethyltrisulfide (DMTS), 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), 2-methylisoborneol (MIB), β-cyclocitral, geosmin (GSM) and β-ionone were separated within 15.3 min. P&T uses trap #07 and high-purity nitrogen purge gas. The calibration curves of the eight odors show good linearity in the range of 1–500 ng/L with a correlation coefficient above 0.999 (levels = 8) and with residuals ranging from approximately 83% to 124%. The limits of detection (LOD) (S/N = 3) are all below 1.5 ng/L that of GSM is even lower at 0.08 ng/L. The relative standard deviations (RSD) are between 3.38% and 8.59% ( n = 5) and recoveries of the analytes from water samples of a eutrophic lake are between 80.54% and 114.91%. This method could be widely employed for monitoring these eight odors in natural waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call