Abstract

Capillary electrophoresis coupled with a capacitively coupled contactless conductivity detector (CE-C(4)D) has been employed for the determination of the β-blocker drugs (atenolol and amiloride) in pharmaceutical formulations. 150 mM acetic acid was used as background electrolyte. The influence of several factors (detector excitation voltage and frequency, buffer concentration, applied voltage, capillary temperature, and injection time) was studied. Non-UV absorbing L-valine was used as an internal standard; the analytes were all separated in less than 7 min. The separation was carried out in normal polarity mode at 28 °C, 25 kV, and using hydrodynamic injection (25 s). The separation was effected in a bare fused-silica capillary 75 μm × 52 cm. The CE-C(4)D method was validated with respect to linearity, limit of detection and quantification, accuracy, precision, and selectivity. Calibration curves were linear over the range 5-250 μg mL(-1) for the studied analytes. The relative standard deviations of intra- and inter-day precisions of migration times and corrected peak areas were less than 6.0%. The method showed good precision and accuracy and was successfully applied to the simultaneous determination of the β-blocker drugs in different pharmaceutical tablets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.