Abstract

Arbutin is an effective agent for the treatment of melanin disorders. Arbutin may be converted to hydroquinone under conditions of high temperature, ultraviolet (UV) radiation and dilute acid. The aim of the current study was to develop an analytical method to determine the levels of arbutin and hydroquinone in whitening cosmetic products using high-performance liquid chromatography with photodiode array detection (HPLC-DAD). In addition, we investigated the effects of high temperature and pH on the decomposition of arbutin. Samples extracted using two-step sonications were separated on a C18 column using a gradient mobile phase consisting of water and methanol. A 60-mm (40 μL) DAD cell was used to enhance the sensitivity of hydroquinone determination. Thermal decomposition of arbutin was evaluated at temperatures ranging from 60 to 120°C for 1-36 h. The method showed good linearity (R(2) ≥ 0.9997), precision (relative standard deviation, RSD < 5%) and acceptable extraction recovery (90-102.6%). The limits of quantitation for arbutin and hydroquinone were 0.0085 and 0.0119 μg mL(-1) , respectively. One sample of 21 cosmetic products tested contained arbutin at a concentration 1.61 g 100 g(-1) cream and 0.12 g 100 g(-1) cream of hydroquinone. Arbutin (327.18 ppm) decomposed after 6 h at 120°C and produced 10.73 ppm of hydroquinone. The developed method is simple to detect both arbutin and hydroquinone simultaneously in cosmetic products, at an adequate level of sensitivity. Notably, temperature and pH did not influence the decomposition of arbutin to hydroquinone in a 2% arbutin cream.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call