Abstract

A gas chromatography-mass spectrometry (GC-MS) method has been proposed for the simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters (PMs). The method includes collection of the particulate matters (PM2.5 and PM10) using dichotomous Partisol 2025 sampler followed by extraction of the compounds into acidic solution, and pre-concentration of the compounds by percolating the air samples through the acidic solution, then ion-pair extraction of amines with bis-2-ethylhexylphosphate and derivatisation with isobutyl chloroformate prior to their GC-MS analysis in both electron impact and positive and negative ion chemical ionisation mode as their isobutyloxycarbonyl (isoBOC) derivatives. In the present study, ambient air and airborne particulate samples collected in Zonguldak province during summer and winter times of 2006–2007 were analysed for aliphatic and aromatic amines by the proposed method and the method was shown to be suitable for the simultaneous determination of these compounds at the levels of pgm−3 in air and airborne particulate samples. The seasonal distributions of bioactive amines in concentrations in ambient air and airborne PMs were evaluated as they are significant for the estimation of their effects on the environment and human health. The concentration levels of water soluble amines fluctuate significantly within a year with higher means and peak concentrations, probably due to the increased emissions from coal-fired domestic and central heating, in the winter times compared to the summer times. The results indicated that the relative amine content in particulates modulates with molecular mass and time of the year and the relative amine content especially in fine fractions of inhalable airborne particulates increases with the molecular mass of species but decreases with temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.