Abstract

Various analytical methodologies have been reported for the determination of 6-shogaol (6-SHO) and 6-gingerol (6-GIN) in ginger extracts and commercial formulations. However, green analytical methods for the determination of 6-SHO and 6-GIN, either alone or in combination, have not yet been reported in literature. Hence, the present study was aimed to develop a rapid, simple, and cheaper green reversed phase high-performance thin-layer chromatography (RP-HPTLC) densitometry method for the simultaneous determination of 6-SHO and 6-GIN in the traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas. The simultaneous analysis of 6-SHO and 6-GIN was carried out via RP-18 silica gel 60 F254S HPTLC plates. The mixture of green solvents, i.e., ethanol:water (6.5:3.5 v/v) was utilized as a mobile phase for the simultaneous analysis of 6-SHO and 6-GIN. The analysis of 6-SHO and 6-GIN was performed at λmax = 200 nm for 6-SHO and 6-GIN. The densitograms of 6-SHO and 6-GIN from traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were verified by obtaining their single band at Rf = 0.36 ± 0.01 for 6-SHO and Rf = 0.53 ± 0.01 for 6-GIN, compared to standard 6-SHO and 6-GIN. The green RP-HPTLC method was found to be linear, in the range of 100–700 ng/band with R2 = 0.9988 for 6-SHO and 50–600 ng/band with R2 = 0.9995 for 6-GIN. In addition, the method was recorded as “accurate, precise, robust and sensitive” for the simultaneous quantification of 6-SHO and 6-GIN in traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas. The amount of 6-SHO in traditional extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas was obtained as 12.1, 17.9, 10.5, and 9.6 mg/g of extract, respectively. However, the amount of 6-SHO in ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were obtained as 14.6, 19.7, 11.6, and 10.7 mg/g of extract, respectively. The amount of 6-GIN in traditional extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were found as 10.2, 15.1, 7.3, and 6.9 mg/g of extract, respectively. However, the amount of 6-GIN in ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were obtained as 12.7, 17.8, 8.8, and 7.9 mg/g of extract, respectively. Overall, the results of this study indicated that the proposed analytical technique could be effectively used for the simultaneous quantification of 6-SHO and 6-GIN in a wide range of plant extracts and commercial formulations.

Highlights

  • The roots or rhizomes of ginger (Zingiber officinale Roscoe; family: Zingeberaceae) have been roots orsupplements rhizomes of ginger (Zingibertimes officinale family: Zingeberaceae) have been used used The as dietary since ancient [1]

  • The results of this study indicated that the proposed analytical technique could be effectively used for the simultaneous quantification of

  • Roscoe; it is cultivated in several countries as dietary supplements since ancient times

Read more

Summary

Introduction

The roots or rhizomes of ginger (Zingiber officinale Roscoe; family: Zingeberaceae) have been roots orsupplements rhizomes of ginger (Zingibertimes officinale family: Zingeberaceae) have been used used The as dietary since ancient [1]. Roscoe; it is cultivated in several countries as dietary supplements since ancient times [1] It is cultivated in several countries around around the globe, India and China are the leading producers of ginger [1,2]. Ginger the globe, India and China the leadingaround producers gingerdue [1,2]. Years, ginger has gained has gained attention fromareresearchers theofglobe toInitsrecent broad range of therapeutic attention from researchers the globe due to main its broad range of therapeutic addition to activities, in addition to itsaround low toxicity [1,2,3]. The therapeutic activities ofactivities, ginger areinantioxidant its low toxicity [1,2,3]. The[4], main therapeutic activities of ginger antioxidant anti-inflammatory [4],

Objectives
Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.