Abstract

Abstract In this paper we propose a numerical algorithm based on the method of fundamental solutions for recovering a space-dependent heat source and the initial data simultaneously in an inverse heat conduction problem. The problem is transformed into a homogeneous backward-type inverse heat conduction problem and a Dirichlet boundary value problem for Poisson's equation. We use an improved method of fundamental solutions to solve the backward-type inverse heat conduction problem and apply the finite element method for solving the well-posed direct problem. The Tikhonov regularization method combined with the generalized cross validation rule for selecting a suitable regularization parameter is applied to obtain a stable regularized solution for the backward-type inverse heat conduction problem. Numerical experiments for four examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.