Abstract

Multiplex detection of tumor markers in blood with high specificity and high sensitivity is critical to cancer diagnosis, treatment, and prognosis. Herein, we demonstrate a strategy for simultaneous detection of multiple tumor markers in blood by functional liquid crystal (LC) sensors assisted with target-induced dissociation (TID) of an aptamer for the first time. Magnetic beads (MBs) coated with an aptamer (apt1) are employed to specifically capture target proteins in blood. After incubation of the obtained protein-coated MBs with duplexes of another aptamer (apt2) and signal DNA, sandwich complexes of apt1/protein/apt2 are formed on the MBs due to specific recognition of target proteins by apt2, which induces release of signal DNA into the aqueous solution. Subsequently, signal DNA is specifically recognized by highly sensitive DNA-laden LC sensors. Using this strategy, a 3D printed optical cell was employed to enable simultaneous detection of multiple tumor markers such as carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), and prostate specific antigen (PSA) with high specificity and high sensitivity. Overall, this effective and low-cost multiplex approach takes advantage of the easy separation of MBs, high specificity of aptamer-based recognition, and high sensitivity of functional LC sensors. Plus, it offers a performance that is competitive to that of commercial ELISA kits without potential interference from hemolysis, which makes it very promising in multiplex detection of tumor markers in clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.