Abstract

A novel genomic and plasmid target-based PCR platform was developed for the detection of Salmonella serovars Heidelberg, Dublin, Hadar, Kentucky, and Enteritidis. Unique genome loci were obtained through extensive genome mining of protein databases and comparative genomic analysis of these serovars. Assays targeting Salmonella serovars Hadar, Heidelberg, Kentucky, and Dublin had 100% specificity and sensitivity, whereas those for Salmonella Enteritidis had 97% specificity and 88% sensitivity. The limits of detection for Salmonella serovars Heidelberg, Kentucky, Hadar, Enteritidis, and Dublin were 12, 9, 40, 13, and 5,280 CFU, respectively. A sensitivity assay was also performed by using milk artificially inoculated with pooled Salmonella serovars, yielding a detection limit of 1 to10 CFU/25 mL of milk samples after enrichment. The minimum DNA detected using the multiplexed TaqMan assay was 75.8 fg (1.53 × 101 genomic equivalents [GE]) for Salmonella Heidelberg, 140.8 fg (2.8 × 101 GE) for Salmonella Enteritidis, and 3.48 pg (6.96 × 102 GE) for Salmonella Dublin. PCR efficiencies were 89.8% for Salmonella Heidelberg, 94.5% for Salmonella Enteritidis, and 75.5% for Salmonella Dublin. Four types of 30 pasteurized milk samples were tested negative by culture techniques and with a genus-specific Salmonella invA gene PCR assay. Among 30 chicken samples similarly tested, 12 (40%) were positive by both culture and the invA PCR. Testing of these 12 samples with the serovar-specific PCR assay detected single and mixed contamination with Salmonella Kentucky, Salmonella Enteritidis, and Salmonella Heidelberg. Five unique primers were designed and tested by multiplex conventional PCR in conjunction with the use of the multiplex TaqMan assay with three of the primers. The diagnostic assays developed in this study could be used as tools for routine detection of these five Salmonella serovars and for epidemiological investigations of foodborne disease outbreaks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.