Abstract

An all-diode-laser-based spectrometer is used for the simultaneous detection of methane, oxygen and water vapour. This is accomplished using a 760-nm diode laser and a 980-nm diode laser in conjunction with difference-frequency generation to 3.4 mum in a periodically poled lithium niobate crystal. Each of the output wavelengths is resonant with one of the molecular species. Simultaneous recordings over a 15-m open path of laboratory air are demonstrated. The recording scheme shows the wide applicability of a diode-laser-based difference-frequency spectrometer for the detection of molecular species in different wavelength ranges. By increasing the frequency of the 760-nm diode laser and decreasing the frequency of the 980-nm diode laser, a maximum continuous tuning range in the mid infrared of 3.6 cm(-1) is achieved. This enables the recording of several methane lines at atmospheric pressure. Pressure-dependence studies of methane lineshapes are also performed in an absorption cell. An indoor-air methane background level of 3 ppm is measured. The signal-to-noise ratio in the recorded methane spectra indicates that sub-ppm detection of methane at atmospheric pressure is feasible. (Less)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call