Abstract
Hg and Cd are the two most toxic heavy metal ions that could be found in aqueous solutions. In this study, a chemosensor based on 5-(4-((4-nitrophenyl) diazenyl) phenyl)-1,3,4-oxadiazole-2-thiol (DOT) was reported to detect these ions simultaneously. DOT showed high selectivity towards Hg ion by changing the color of the solution from beige to gold-yellow at different concentrations of Hg ion. In comparison, other relevant metals, such as Li+, Na+, K+, Cs+, Mg2+, Ca2+, Al3+, Fe2+, Ag+, Cu2+, Pb2+, Ni2+, Zn2+, Cr3+, Fe3+, Pb4+, Mn2+, and Cd2+ did not affect the color of the DOT solution as the interfering ions. Despite no changes in the color of DOT solution in the presence of Cd ion, a solution containing DOT-Hg complex was changed from gold-yellow to orange by adding Cd ion, providing an approach for detecting Hg and Cd ion simultaneously with UV–Vis and Fluorescent spectroscopy. DOT exhibited a high association constant with a detection limit of 0.05 μM for Hg and Cd ions in an aqueous solution. The results of quantum mechanics (QM) calculations were also consistent with the experimental observations, which indicated that changes in the band gap could explain the various colors of DOT complex with metal ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.