Abstract
Rapid detection and identification of potentially harmful bacteria is ideal for food manufacturers to prevent foodborne illness outbreaks. Continuous monitoring method of foodborne pathogens levels and trends in food gives real-time results. Therefore, the objectives of this study were to fabricate and characterize the continuous flow multijunction biosensor for simultaneous detection of Escherichia coli K12 and Staphylococcus aureus. Junction biosensors were fabricated using gold plated tungsten wires coated with polyethylenimine and single walled carbon nanotubes. Each junction was functionalized with streptavidin and biotinylated antibodies specific to E. coli K12 and S. aureus. Then, single or 2 biosensors for each targeted analyte were connected to tubing, perpendicular to the flow direction. Pure serial diluted samples of E. coli K12 and S. aureus and microbial cocktail samples were continuously pumped at a 0.0167 mL/s into the detection zone. Changes in the electric current by biorecognition reactions between antibody and antigens were calculated. The developed junction sensor coupled with the fluidic channel showed the enhancement of the electric signal responses for detection of E. coli K12, compared to the stationary sensor. A linear regression was observed for both the E. coli and S. aureus functionalized array sensors in the detection range of 10(2) to 10(5) CFU/mL. Multiplexed detection of bacteria at the sensing levels as low as 10(2) CFU/mL for E. coli K12 and S. aureus was achieved within 2 min. Therefore, the continuous flow multijunction biosensor shows potential for rapid and continuous multiplexed detection of foodborne pathogens.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.